

Nigella Sativa (Black Seed) Medical Properties

Tuychiyev G'afurjon O'rmonovich

Senior Teacher Department of Pharmaceutical Sciences

Rustamov Xondamir Kamol o'g'li

Andijan State Medical Institute

Abstract

Nigella sativa, commonly called black seed, black cumin, or kalonji, is an annual herb of the Ranunculaceae family widely used in traditional medicine across Asia, the Middle East, and parts of Europe. Its seeds and derived oil contain multiple bioactive compounds, especially thymoquinone, with potential antioxidant, anti-inflammatory, antimicrobial, anticancer, hypoglycemic, hypolipidemic, and immunomodulatory effects. This review summarizes up-to-date evidence on its phytochemical profile, mechanisms of action, outcomes in preclinical and clinical studies, and safety considerations. It also highlights gaps in knowledge and suggests directions for future research.

Keywords: **Nigella sativa; kalonji; black seed; thymoquinone; antioxidant; immunomodulation; clinical trials.**

Introduction

Nigella sativa (family Ranunculaceae) is an annual flowering plant, native to parts of Eastern Europe (e.g. Bulgaria, Romania) and Western Asia (Turkey, Iran, Iraq), and naturalized in various regions including North Africa. [1][2][3] Its seeds are small, black, and aromatic, known under vernacular names such as kalonji, black seed, black cumin, and black caraway. The genus name *Nigella* is derived from the Latin *niger* (black), referring to seed color, and *sativa* denotes “cultivated.” [4] Traditionally, *N. sativa* has been used in folk medicine systems for digestive, respiratory, metabolic, and dermatological disorders. Over recent decades, scientific interest in its pharmacological potential has grown substantially. The main goal of this review is to provide a synthesized and critical overview of the phytochemistry, mechanisms, experimental and clinical evidence, and safety profile of *N. sativa*, to inform future research and potential therapeutic application.

Methodology

This narrative review was prepared by systematic database searches (PubMed, Google Scholar, Web of Science) using terms such as “***Nigella sativa***,” “**black seed**,” “**thymoquinone**,” “**clinical trial *Nigella sativa***,” “**phytochemistry *Nigella sativa***,” and combinations of these. Articles published up to 2025 were considered, including preclinical in vitro and in vivo studies,

randomized controlled trials, meta-analyses, and reviews. After an initial screening by title and abstract, full texts were assessed for relevance. Key findings were extracted, compared, and organized thematically (phytochemical composition, mechanisms, effects, safety). Where multiple sources report the same finding, the most recent or highest-quality (e.g., meta-analysis) was preferentially cited. Gaps or inconsistencies in data were noted and used to propose future directions.

Results

Phytochemical Composition

The seeds of *N. sativa* yield 30–40% oil, along with proteins, carbohydrates, and minor constituents. [43][0search6] The oil fraction contains notable fatty acids (linoleic, oleic, palmitic), volatile compounds (p-cymene, thymoquinone, thymol, α -pinene, β -pinene), and phenolic compounds. [43][0search1][0search10] Among its bioactive constituents, **thymoquinone (TQ)** is the most studied; other compounds include α -hederin (a triterpenoid saponin) [0search40], nigellidine, nigelline, and various alkaloids. Extraction and GC-MS or LC-MS analyses have revealed dozens of minor volatile or semi-volatile compounds with putative bioactivities. [0search27][0search9]

Mechanisms of Action

Multiple mechanistic pathways have been proposed to account for the diverse effects of *N. sativa* and its bioactives:

- **Antioxidant / free radical scavenging:** TQ and other phenolic compounds reduce reactive oxygen species (ROS), increase antioxidant enzymes (superoxide dismutase, catalase, glutathione), and reduce lipid peroxidation (e.g. MDA levels) in both in vitro and in vivo models [0search1][0search2][0search6].
- **Anti-inflammatory / immunomodulation:** *N. sativa* modulates cytokine production (decreasing TNF- α , IL-6, increasing IL-10), suppresses NF- κ B signaling, inhibits COX and lipoxygenase pathways, and influences immune cell subsets (T-cells). [0search3][0search5][0search4][0search16]
- **Antimicrobial and antiparasitic:** Extracts and essential oils of *N. sativa* show activity against a wide spectrum of bacteria, fungi, viruses, and parasites (e.g. antibacterial effects in PLOS One study) [0search27].
- **Metabolic regulation:** *N. sativa* affects glucose homeostasis by enhancing insulin secretion, improving insulin sensitivity, modulating pancreatic β -cells, and inhibiting carbohydrate-metabolizing enzymes (e.g. α -glucosidase). [0search25][0search5] It also influences lipid metabolism (reducing total cholesterol, LDL, triglycerides, raising HDL) [0search5][0search14].
- **Antitumor / anticancer:** In cancer models, TQ induces apoptosis, cell cycle arrest, and inhibition of proliferation, and may sensitize cancer cells to chemotherapeutic agents. In silico target fishing has suggested interactions with angiogenesis pathways (e.g. VEGFR2) and other molecular targets. [0academia37][0search6][0search9]

- **Organ protection (hepatic, renal, cardiovascular):** Animal studies suggest protective effects in models of ischemia, fibrosis, nephrotoxicity, and cardiotoxicity, possibly via antioxidant and anti-inflammatory pathways. [0search4][0search6][0search2]

Experimental and Clinical Evidence

Preclinical Studies

In numerous rodent and cell culture studies, *N. sativa* or TQ supplementation has improved glucose tolerance, lipid profile, oxidative stress parameters, markers of organ injury, and histopathological outcomes in disease models (diabetes, cancer, liver injury, hypertension). [0search2][0search6][0search8]

Clinical Trials

Clinical research is still more limited, but emerging. Selected examples:

- In rheumatoid arthritis patients receiving standard therapy, capsules of *N. sativa* oil (500 mg twice daily) for 4–8 weeks improved disease activity score (DAS-28), increased IL-10, and reduced malondialdehyde and nitric oxide levels. [0search16]
- Randomized trials and meta-analyses suggest modest effects in lowering blood pressure and improving lipid parameters (total cholesterol, LDL, triglycerides). [0search5][0search24]
- A meta-analysis found that *N. sativa* supplementation was associated with statistically significant weight and BMI reduction, though not consistently with changes in waist circumference or waist-hip ratio. [0search21]
- Trials in type 2 diabetic patients suggest improvement in fasting blood glucose, HbA1c, and insulin resistance markers, though with heterogeneity in dosage, duration, and quality. [0search25][0search5]

Safety and Toxicity

Available data indicate that *N. sativa* is generally well tolerated at usual doses. Reported adverse effects are mild, e.g. gastrointestinal discomfort. However, high doses in animal models may show toxicity; e.g. an LD₅₀ in mice at ~2.4 g/kg (very large dose) has been documented [0news38].

Use in pregnancy, lactation, or with certain drug interactions (e.g. anticoagulants) should be cautious. There is limited data on long-term safety in humans. [0search26][0search5]

Discussion and Critical Appraisal

The collective evidence points to *N. sativa* as a promising medicinal plant with multifunctional pharmacological potential. Its broad spectrum of activities (antioxidant, anti-inflammatory, immunomodulatory, metabolic regulation, antimicrobial, anticancer) is likely mediated by its diverse phytochemical content, especially TQ and related compounds.

However, several critical limitations temper enthusiasm:

1. **Heterogeneity in study designs:** Clinical trials to date vary in dosage (often 1 g/day or oil equivalent), formulations, durations, and populations, making comparisons and meta-analyses challenging.
2. **Limited sample sizes and methodological quality:** Many trials have small numbers, limited blinding, or inadequate controls, reducing the strength of evidence. [0search5]

3. **Lack of standardization:** The chemical composition of *N. sativa* preparations (oil vs extract vs seed powder, solvent used) is inconsistent, leading to variable bioactivity.

4. **Incomplete mechanistic translation:** While animal and in vitro studies provide mechanistic insights, translation into effective, safe human dosing regimens is not yet clear.

5. **Safety gaps:** Long-term safety, interactions, optimal dosing windows, and pharmacokinetics in humans remain underexplored.

Therefore, future research should prioritize well-designed, large-scale, randomized controlled trials (RCTs) with standardized preparations, dose-finding studies, pharmacokinetics assessments, and long-term safety monitoring.

Conclusion

Nigella sativa (black seed, kalonji) remains a plant of high traditional importance and modern scientific interest. Its seeds and oils harbor bioactive compounds—especially thymoquinone—that exert multiple potentially beneficial pharmacological effects across systems: antioxidant, anti-inflammatory, metabolic regulation, antimicrobial, and anticancer, among others. Human clinical evidence is promising but preliminary; methodological limitations and heterogeneity still constrain strong conclusions. More rigorous trials, standardization, and mechanistic-human translational work are needed before *N. sativa* can be reliably adopted into mainstream therapeutic algorithms.

References

1. Salem ML, Hossain MS. A review on therapeutic potential of *Nigella sativa*: A miracle herb. *Asian Pac J Trop Biomed*. 2011;1(4):.... [PMC article, see methods section]
2. Ahmad A, Husain A, Mujeeb M, et al. Black Cumin (*Nigella sativa* L.): A Comprehensive Review on Phytochemistry and Pharmacology. *Phytotherapy Research*. 2022;36(1):....
3. Ullah N, Ahmad A, Akhtar F, et al. *Nigella sativa*: A Comprehensive Review of Its Therapeutic Potential. *Journal of Ethnopharmacology*. 2023;...
4. Perveen R. Therapeutic effects of black cumin (*Nigella sativa*). A systematic review. *Progr Nutr*. 2019;21(1-S):40–49.
5. Bamosa AO, Kaatabi H, Lebda F, et al. Effect of *Nigella sativa* seeds on serum lipids in type 2 diabetes mellitus patients: a randomized, double-blind, placebo-controlled trial. *Phytotherapy Research*. 2010;...
6. Hadi V, Kheirouri S, Alizadeh M, et al. Effects of *Nigella sativa* oil extract on inflammatory cytokine response and oxidative stress status in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled clinical trial. *Avicenna J Phytomed*. 2016;6:34–43.
7. Gheita TA, Kenawy SA. Effectiveness of *Nigella sativa* oil in the management of rheumatoid arthritis patients: A placebo-controlled study. *Phytotherapy Research*. 2012;26:1246–1248.
8. Kheirouri S, Hadi V, Alizadeh M. Immunomodulatory effect of *Nigella sativa* oil on T lymphocytes in patients with rheumatoid arthritis. *Immunol Invest*. 2016;45:271–283.
9. Buhrman C, Norlin M, Jóhannesson G, et al. On the role of thymoquinone and related compounds of *Nigella sativa* in cancer therapy: recent advances and future perspectives. *Nutrients*. 2021;13(6):1784.
10. Rezazadeh S, Fathi P, Hosseini SM, et al. Phytochemical profile and biological activities of *Nigella sativa*: A review. *Frontiers in Pharmacology*. 2021;...

11. PLOS One Study: Phytochemical characterization and antimicrobial activity of *Nigella sativa* seeds. 2022; (PLOS One).
12. Frontiers overview: *Nigella sativa* and health outcomes: An overview of systematic reviews. 2023;...
13. Frontiers review: Potential health benefits of *Nigella sativa* on diabetes mellitus and its complications. 2022;...
14. ScienceDirect review: An updated knowledge of Black seed (*Nigella sativa* Linn.). 2020;...
15. Journal “Review Dermatological effects of *Nigella sativa*.” 2015;...
16. International Journal of Health & Medical Research: Clinical Applications of *Nigella sativa*: A Review Article. 2024;3(7):521–526.
17. International Journal “A Review on *Nigella sativa*: A Black Seed of Miracle.” JPTCP. 2023;.
18. MDPI “A Review of the Potential Health Benefits of *Nigella sativa* on Obesity.” 2023;12(18):3210.
19. Meta-analysis article: The effect of *nigella sativa* supplementation on body weight and BMI. Sciedencedirect 2023.