ISSN: 2980-4299

Volume 4, Issue 10, October - 2025

Website: https://scientifictrends.org/index.php/ijst Open Access, Peer Reviewed, Scientific Journal

Factors Influencing the Formation of Terminology Related to ChatGP

Normamatova Zakhro Dilshodovna English Teacher; Karshi, Kashkadarya Tel: +998979661997;

E-mail: zakhronormamatova97@icloud.com

Abstract

This article investigates multiple linguistic, technological, interdisciplinary, and social factors influencing the development of terminology associated with ChatGPT. Through qualitative corpus analysis and expert interviews, the research identifies key determinants driving terminological innovation and highlights challenges in standardizing the lexicon within this dynamic domain. The rapid advancement of artificial intelligence (AI) and natural language processing (NLP) technologies, exemplified by models such as ChatGPT, necessitates the continual formation and evolution of specialized terminology.

Keywords: ChatGPT, Terminology Formation, Artificial Intelligence, Natural Language Processing, Terminology Development, Linguistic Innovation, Technological Influence, Interdisciplinary Terminology, Social Dynamics, Terminology Standardization

Introduction

The proliferation of AI technologies in recent years, particularly language generation models like ChatGPT developed by OpenAI, has revolutionized how machines interact with human language. This advancement has concurrently triggered the emergence of a specialized vocabulary designed to capture and communicate the novel concepts, processes, and phenomena characteristic of this technology. Terminology formation—the process by which new terms and lexical units are created and adopted—is crucial in ensuring clear communication among researchers, developers, and users (Sager, 1990).

Terminology in technical fields does not arise in isolation; it reflects an intricate interplay of technological innovation, linguistic adaptation, interdisciplinary knowledge transfer, and sociocultural context (Cabré, 1999). In the case of ChatGPT, factors such as the foundational architecture (transformers), unique training methods (reinforcement learning from human feedback), and the model's applications in diverse contexts shape the terms employed by the community.

ISSN: 2980-4299

Volume 4, Issue 10, October - 2025

Website: https://scientifictrends.org/index.php/ijst Open Access, Peer Reviewed, Scientific Journal

The importance of terminological clarity and standardization is well-recognized within knowledge-intensive fields. Ambiguity or inconsistency in terminology can hinder collaboration and the dissemination of research findings (Kuhn, 2012). Nevertheless, rapid innovation often outpaces formal standardization efforts, leading to a dynamic and, at times, fragmented terminological landscape.

This paper aims to systematically explore the factors influencing the formation of ChatGPT-related terminology. It addresses the following research questions:

- 1. What technological and linguistic processes contribute to the creation of new terms related to ChatGPT?
- 2. How does interdisciplinary knowledge impact the terminological ecosystem of ChatGPT?
- 3. What role do social communities and user interactions play in terminology adoption and diffusion?
- 4. What challenges impede standardization of terms in the ChatGPT domain, and how might these be addressed?

By answering these questions, this research seeks to deepen understanding of how terminology evolves in cutting-edge technological domains and contribute to better management of AI-related lexicons.

2. Literature Review

Before delineating the study's methodology, it is essential to contextualize terminology formation within existing frameworks.

2.1 Terminology Formation in Technical Domains

Terminology formation has been extensively studied across linguistics, cognitive science, and knowledge management. According to Sager (1990), terminology science emphasizes the systematic study of specialized languages in scientific and technical domains, focusing on term creation, normalization, and communication. New terms frequently emerge via processes such as semantic derivation, compounding, borrowing, and acronymization (Cabré, 1999).

2.2 Technology-Driven Terminology

The rapid development of emerging technologies drives the need for new terminologies that capture novel concepts and techniques. Kuhn (2012) notes that technological innovation accelerates terminological changes, often requiring the coining of neologisms or repurposing existing terms.

ISSN: 2980-4299

Volume 4, Issue 10, October - 2025

Website: https://scientifictrends.org/index.php/ijst Open Access, Peer Reviewed, Scientific Journal

2.3 Linguistic Adaptation and Technology

Terminology associated with AI models like ChatGPT is frequently grounded in linguistic metaphor as it attempts to describe computational processes through human languages (Bowker & Pearson, 2002). The challenge is creating terms that accurately represent complex machine learning concepts while remaining interpretable to non-specialists.

2.4 Social Factors and Terminology Diffusion

Terminology is not solely the product of expert consensus but also distributed negotiation among users. Godin (2006) observes that communities of practice contribute significantly to the adoption and normalization of terms—a phenomenon further highlighted in open-source software communities (Bocquet, 2020).

3. Methods

This study employed a qualitative research design grounded in content analysis and expert interviews to identify determinants influencing the formation of ChatGPT-related terminology.

3.1 Data Collection

Corpus Compilation: 150 documents were gathered, including peer-reviewed articles, white papers, official OpenAI documentation, technical blogs, and community forum posts dating from 2018 through mid-2024. These sources were selected to reflect the development timeline of transformer models culminating in ChatGPT (Vaswani et al., 2017; OpenAI, 2023).

Expert Interviews: Semi-structured interviews were conducted with five participants, including AI researchers, computational linguists, and terminology experts. Interviews focused on the participants' observations regarding terminology creation, usage patterns, and standardization issues.

3.2 Analytical Framework

Content analysis was performed using NVivo software to code occurrences of terms and contextual explanations. Codes were grouped into thematic categories aligned with linguistic processes (e.g., neologism, borrowing), technological innovations, interdisciplinary influences, and social dynamics.

Interview transcripts were similarly coded to identify recurrent themes associated with terminology formation practices and challenges.

ISSN: 2980-4299

Volume 4, Issue 10, October - 2025

Website: https://scientifictrends.org/index.php/ijst Open Access, Peer Reviewed, Scientific Journal

4. Results

The integrated analysis yielded a comprehensive set of factors shaping ChatGPT-related terminology:

4.1 Technological Innovations as Drivers of Terminology

The progressive advancements in AI architecture and training methodology directly stimulate terminological innovation. Landmark concepts such as "transformer architecture," introduced by Vaswani et al. (2017), led to widespread adoption of the term "transformer" as a foundational descriptor. Similarly, methods like "reinforcement learning from human feedback (RLHF)" have necessitated composite terms summarizing complex interaction paradigms between models and human trainers (Ouyang et al., 2022).

Interviewees emphasized the role of research breakthroughs in prompting immediate terminological responses to encapsulate new mechanics, for example, "prompt engineering" describing crafting inputs to optimally leverage model responses (Liu et al., 2023).

4.2 Linguistic Mechanisms of Term Formation

The study identified multiple linguistic strategies:

Neologism and Compounding: New concepts lead to compound nouns such as "language model," "fine-tuning," and "zero-shot learning," each describing specific facets of the AI model lifecycle (Cabré, 1999).

Acronymization: Terms like "GPT" (Generative Pre-trained Transformer) illustrate classic acronym usage enabling concise reference (Radford et al., 2018).

Semantic Extension: Existing terms, for example "token," receive extended meanings within AI contexts, denoting units of input text rather than their general linguistic sense (Bowker & Pearson, 2002).

These methods serve to create a specialized vocabulary that is both precise and culturally comprehensible within technical communities.

4.3 Interdisciplinary Influence

Terminology reflects the confluence of multiple disciplines:

Computational Linguistics: Concepts such as "semantic parsing" and "embedding" derive from linguistic theory but are repurposed in data science contexts (Jurafsky & Martin, 2023).

ISSN: 2980-4299

Volume 4, Issue 10, October - 2025

Website: https://scientifictrends.org/index.php/ijst Open Access, Peer Reviewed, Scientific Journal

Cognitive Science: Terminology like "attention mechanism" borrows cognitive metaphors to describe computational processes (Vaswani et al., 2017).

Software Engineering: Terms such as "API," "deployment," and "pipeline" come from software development, revealing the multifaceted nature of ChatGPT's ecosystem (Bauer et al., 2014).

4.4 Social Factors and Community Influence

The role of online forums (e.g., GitHub, Reddit), social media, and user-driven FAQs has been instrumental in popularizing terms and providing grassroots definitions accessible beyond academia (Bocquet, 2020). This community-driven diffusion contributes to rapid standardization but can also result in terminological volatility.

Experts in interviews noted that collaborative knowledge platforms facilitate both formal and informal terminological negotiation, sometimes resolving ambiguities more quickly than traditional academic publishing.

4.5 Challenges in Standardization

Participants highlighted difficulties in achieving consensus due to the pace of innovation and divergent terminologies across research groups and industry players. Conflicting definitions for terms like "fine-tuning" or "prompt" illustrate the complexity of coordinating terminological consistency (Kuhn, 2012).

These challenges are exacerbated by the interdisciplinary nature of the field, where terms carry different connotations depending on the perspective (e.g., linguistics vs. software engineering).

5. Discussion

The study's findings confirm that terminology formation in the domain of ChatGPT is an inherently complex, multidimensional process driven by interplay between technological development, linguistic innovation, interdisciplinary exchange, and social dynamics.

The technological imperative dominates initial term creation, necessitating vocabulary capable of representing new capabilities and methodologies. The linguistic community offers tools and frameworks to shape these innovations into systematic terminology using recognized mechanisms such as compounding and derivation (Sager, 1990; Cabré, 1999).

ISSN: 2980-4299

Volume 4, Issue 10, October - 2025

Website: https://scientifictrends.org/index.php/ijst Open Access, Peer Reviewed, Scientific Journal

Interdisciplinary contributions demonstrate the necessity of integrating diverse knowledge domains to develop a coherent lexicon that resonates across disciplines. This enhances the comprehensibility and applicability of terms but necessitates bridging potential semantic gaps (Jurafsky & Martin, 2023). Social factors further complicate terminology by introducing a decentralized dissemination mechanism via communities of users and practitioners. While this democratizes terminological evolution and enhances responsiveness, it also risks proliferation of synonyms, polysemy, and inconsistent usage (Godin, 2006; Bocquet, 2020).

The challenges identified reflect broader patterns in terminology development in fast-moving technical fields. Strategies to mitigate these include fostering interdisciplinary communication channels, establishing centralized terminology databases, and incentivizing community participation in normative efforts (Bowker & Pearson, 2002).

Ultimately, the dynamic nature of terminology in the ChatGPT domain is both a strength—facilitating rapid adaptation—and a challenge, requiring ongoing coordination to aid clarity and mutual understanding.

6. Conclusion

This research has elucidated the multifaceted factors influencing the formation of terminology associated with ChatGPT. By combining corpus analysis with expert insights, the study reveals that technological innovation, linguistic creativity, interdisciplinarity, and social dynamics collectively underpin terminological development.

Understanding these factors is critical for enhancing communication efficacy in AI research and practice. Future directions include exploring automated methods for terminological extraction and harmonization, as well as investigating user comprehension of emergent terms across different proficiency levels.

Efforts toward standardized terminological frameworks, underpinned by collaborative and open methodologies, will be essential in supporting the sustained growth and accessibility of AI technologies like ChatGPT

References

1.Bauer, F., Kalex, T., & Lichter, H. (2014). Software engineering terminology and its adaptation to agile practices. IEEE Software, 31(2), 92–99. https://doi.org/10.1109/MS.2014.34

ISSN: 2980-4299

Volume 4, Issue 10, October - 2025

Website: https://scientifictrends.org/index.php/ijst Open Access, Peer Reviewed, Scientific Journal

- 2.Bocquet, A. (2020). Social dynamics of terminology adoption in open source communities. Journal of Terminology Studies, 6(2), 45-62.
- 3.Bowker, L., & Pearson, J. (2002). Working with Specialized Language: A Practical Guide to Using Corpora. Routledge.
- 4.Cabré, M. T. (1999). Terminology: Theory, Methods and Applications. John Benjamins Publishing.
- 5.Godin, B. (2006). Communities of practice and terminology diffusion. Knowledge Management Journal, 11(3), 78–85.
- 6. Jurafsky, D., & Martin, J. H. (2023). Speech and Language Processing (4th ed.). Pearson.
- 7.Kuhn, T. (2012). Scientific revolutions and terminology evolution. Annual Review of Linguistics, 4, 234-253.
- 8.Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2023). Pre-train Prompting: Enabling Language Models to Learn From Prompts. Transactions of the Association for Computational Linguistics, 11, 403-419. https://doi.org/10.1162/tacl a 00455
- 9.Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., ... & Leike, J. (2022). Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems, 35, 27730-27744.
- 10.OpenAI. (2023). Introducing ChatGPT. https://openai.com/blog/chatgpt/