International Journal of Scientific Trends- (IJST)
ISSN: 2980-4299

Volume 4, Issue 9, September - 2025

Website: https://scientifictrends.org/index.php/ijst

Open Access, Peer Reviewed, Scientific Journal

Hardware Description Languages in Modern

Digital Design
Shadiyeva Marjona

Inha University in Tashkent / Department of Hardware Engineering
marjonashu@icloud.com

Abstract

Hardware Description Languages also known as HDLs have
become a breakthrough in the world of engineering by
transforming the way digital systems are designed and
implemented. As technology becomes increasingly complex,
traditional schematic-based design methods are no longer
sufficient to describe complex hardware systems. HDLs have
INTERNATIONAL emerged as tools that address this problem since they provide
SCIENTIRG efficient and structured ways to describe circuits at various
abstraction levels and enable the synthesis of these descriptions
into real hardware. This paper aims to demonstrate the
importance of using HDLs in designing modern digital systems by
outlining types of HDLs, their use in hierarchical and modular

design, verification, simulation and synthesis processes. The
examination of the role of HDLs demonstrates that they have
become crucial in digital design due to their ability to provide a
framework for transforming mere descriptions into real-life
circuits.

Keywords:

Introduction

In our cutting-edge era, when technologies grow more and more complex, so do the schematics of
circuits based on which these technologies are implemented. This creates a need for textual and
structured methods for describing circuits, since traditional schematic design has become less
relevant due to its inability to represent and manage all parts of complex circuits. Schematics of
complex hardware can contain an enormous number of logical gates, hence, drawing them has
become impractical and time-consuming. Other problems were lack of abstraction and poor
reusability of traditional schematic-based drawing, since they represent circuit only at the level of
wires and making any changes would require redrawing the whole scheme.

It is HDLs that replaced traditional design and provided means to model complex systems at
various levels of abstraction, such as behavioral, register-transfer and gate levels. They enabled
simulation of circuits before their physical production and synthesis of circuit description into
actual physical hardware. HDLs eliminated the need to manually draw interconnection of gates

75| Page

https://scientifictrends.org/index.php/ijst

International Journal of Scientific Trends- (1JST)
ISSN: 2980-4299

Volume 4, Issue 9, September - 2025

Website: https://scientifictrends.org/index.php/ijst

Open Access, Peer Reviewed, Scientific Journal

and wires by providing simple code that can effectively represent any circuit. Their hierarchical
design gives opportunity to test each sub-module separately and increases reusability.

The purpose of this paper is to examine the role that Hardware Description Languages have in
designing digital devices, by firstly exploring all abstraction levels they use and their different
types. Then, it discusses main features of hierarchical and modular design, verification process
and various categories of simulation: functional, timing and post-synthesis simulations. Finally,
it explains synthesis and implementation using FPGA and ASICs.

2. Fundamentals of Hardware Description Languages

2.1 Definition

Hardware Description Language is a computer language, but unlike programming languages
like Pascal and C that are used to describe computer programs, Hardware Description Languages
are used in the field of digital design to describe digital circuits. If programming languages follow
sequential execution, HDLs are concurrent. That is to say, they allow engineers to model the
concurrency of processes that occur in hardware elements (Palnitkar, 2003)

2.2 Abstraction levels

HDLs allow engineers to describe circuits on various abstraction levels. The most essential
abstraction levels are:

1. Behavioral level. This is the highest level of abstraction provided by HDLs and it describes the
overall behavior of a circuit. A module can be implemented in terms of the desired design
algorithm without concern for the hardware implementation details. Designing at this level is very
similar to C programming. (Palnitkar, 2003)

2. Dataflow level. At this level, the module is designed by specifying the data flow. It is important
that how data flows between hardware registers and how it is processed within the design should
be understood by designer. (Palnitkar, 2003)

3. Gate level. The module is implemented in terms of logic gates (AND, NOT, OR, NAND etc)
and how these gates are interconnected. Design at this level is similar to describing a design in
terms of a gate-level logic diagram. (Palnitkar ,2003)

4. Register-transfer level (RTL). This level represents a combination of behavioral and dataflow
modellings — it describes circuits in terms of data flow at register level. RTL is the most common
level used for synthesis, as it provides a good balance between abstraction and applicability.
(Palnitkar, 2003)

2.3 Types of HDLs

When learning about HDLs it is crucial to know about different types of HDLs. Nowadays there
are three main languages that are most commonly used:

1.VHDL-which stands for VHSIC (Very High-Speed Integrated Circuit) Hardware Description
Language, was developed in the early 1980s by the U.S. Department of Defense (DoD) as part of

76 |Page

https://scientifictrends.org/index.php/ijst

International Journal of Scientific Trends- (1JST)
ISSN: 2980-4299

Volume 4, Issue 9, September - 2025

Website: https://scientifictrends.org/index.php/ijst

Open Access, Peer Reviewed, Scientific Journal

the VHSIC program. The program's primary goal was to create a standardized language for the
design and verification of digital systems, particularly for military applications. (Sufyan, 2024)

2. Verilog — introduced by Gateway Design Automation in 1984 as a proprietary language for
simulating and verifying digital circuits. It was one of the first hardware description languages
developed from 1983 to 1984. In 1995 The first official standard for Verilog, known as IEEE
Standard 1364-1995, was published. (Sufyan, 2024)

3.SystemVerilog - started with the donation of the Superlog language to Accellera in 2002 by the
startup company Co-Design Automation. In 2005, SystemVerilog was adopted as IEEE
Standard 1800-2005. In 2009, the standard was merged with the base Verilog (IEEE 1364-2005)
standard, creating IEEE Standard 1800-2009(Wikipedia contributors, n.d.).

3. Hierarchical and modular design

Hardware description languages use a hierarchical design, due to which they became popular and
widely used. Hierarchical design addresses some of the problems which traditional written
schematics had- it provides a way to cover all elements without ambiguity and enables reusability.
There are two main hierarchical methodologies: top-down, where high-level functionality is
divided into smaller sub-blocks, and bottom-up, where small blocks are designed first and
integrated into larger systems. These hierarchical modeling concepts can be related to HDLs.
HDLs provide a concept of a module- which is the basic building block and can be an element or
a collection of lower-level design blocks. A module provides the necessary functionality to the
higher-level block through its port interface (inputs and outputs), but hides the internal
implementation- this concept is called encapsulation. This concept enables modifying and testing
module internals and separate blocks without affecting the rest of the design (Palnitkar, 2003).

In Verilog, a module is declared by the keyword module. A corresponding keyword endmodule
must appear at the end of the module definition (Fig 1). For VHDL, it’s “entity-architecture”
construct (Palnitkar, 2003).

module <module_name> {<module_terminal_list>);
<module internals>
endmodule

Fig 1. Syntax of Verilog for modules

Similarly, using modular design enables reusability- once the module is written, it can be reused
again without modification. Thus, this mirrors software engineering principles of encapsulation
and modularity.

4.Verification and Simulation
Hardware circuits and chips require a huge amount of time and resources. In the case of smallest
mistake or bug it will cost month of work and money, since change must be implemented in

77| Page

https://scientifictrends.org/index.php/ijst

International Journal of Scientific Trends- (1JST)
ISSN: 2980-4299

Volume 4, Issue 9, September - 2025

Website: https://scientifictrends.org/index.php/ijst

Open Access, Peer Reviewed, Scientific Journal

original design, and new chip should be manufactured. To avoid such troublesome cases,
verification process must be done.

Verification is a critical process in hardware engineering that ensures that system or component
meets its specified requirements and performs intended functions accurately. It checks whether
design implementations match the original design intent before manufacturing. Not only does
verification help to catch functional bugs, but also checks performance and security
vulnerabilities, which ensures robustness and reliability of a product (Khan, 2025). There is a wide
range of techniques using which verification is done, but for now only the most widely used
technique will be discussed- simulation.

Simulation is the verification technique which involves executing the design under the test (DUT)
in a software environment using testbenches (or simulation blocks) that imitate real-world
scenarios. DUT is run on a computer or simulator, and it is observed how it reacts to different
inputs such as test vectors. This process reveals functional errors and unexpected behaviors (Khan,
2025). Simulations use HDLs code and execute them like a program. They understand HDL code
and allow writing testbenches which provide stimuli like inputs and expected outputs.

There are three main types of simulations:

1. Functional simulation. Functional simulation is used to verify the logical correctness of the
design and performed in the very early stages. It ensures that design behaves and functions as
intended logically. However, it does not consider the timing delays of the physical
implementation, and for that reason it is generally faster than timing simulation. It is performed
using simulators like Xilinx Vivado Simulator (Vemeko, 2025).

2.Timing simulation. It is used to verify that the design meets timing requirements after
considering the physical implementation. Without it design may fail timing constraints, even if it
functions correctly, so timing simulation ensures design works considering real-world delays. It
is performed after design has been synthesized, and it is generally slow due to timing analysis.
Performed using Xilinx Vivado and other tools (Vemeko, 2025).

3.Post-synthesis simulation. This is simulation that is done after design synthesis into gate-level
netlist. The earlier simulation at a higher level of abstraction does not account for specific
implementations of the hardware components that the design is using. For that reason post-
synthesis simulation is done to ensure that implementation of design did not break its functionality.
Also performed using Xilinx Vivado simulators (Roth et al., 2016).

5. Synthesis and implementation

The next two consecutive stages in designing hardware are synthesis and implementation. These
stages are performed after writing HDL code and verification and functional simulation processes
and logically follow design flow (Fig 2).

In the synthesis process, HDL codes are compiled and translated into netlist by a program called
a synthesis tool. In detail, synthesis tools convert the RTL descriptions to a gate-level netlist which
is a description of the circuit in terms of gates and connections between them. Synthesis tools
ensure that the gate-level netlist meets all required specifications, such as timing, area and power.

78| Page

https://scientifictrends.org/index.php/ijst

International Journal of Scientific Trends- (1JST)

ISSN: 2980-4299

Volume 4, Issue 9, September - 2025

Website: https://scientifictrends.org/index.php/ijst

Open Access, Peer Reviewed, Scientific Journal

Hence, input in this stage is RTL HDL code, output: gate-level netlist (Mano & Kime, 2001;
RealDigital, n.d.).

Next, gate-level netlist is passed as an input to an Automatic Place and Route (APR) tool. It creates
a layout which is verified and then fabricated on a chip. This stage is called implementation.
Implementation process maps the synthesized design onto FPGA or ASIC chip targeted by design.
Output of this stage is physical layout for ASIC or configuration for FPGA (Mano & Kime, 2001;
RealDigital, n.d.).

After completing these stages, design is ready and usually post-implementation verification and
timing analysis are carried out to ensure that design works as expected under physical constraints
and meets all requirements.

Design Specification

Y

Behavioral Description

Y

. -
C RTL Description (HDL) |eg—

Functional Verification

and Testing

Y

Logic Synthesis/
Timing Verification

Y

Gate-Level Netlist

Y

Logical Verification
and Testing

Y

Floor Planning
Automatic
Place and Route

Y

| Physical Layout |
L]

Layout Verification ’7
Y

Implementation

Fig 2. Typical design workflow
(Mano & Kime, 2001)

79| Page

https://scientifictrends.org/index.php/ijst

International Journal of Scientific Trends- (1JST)
ISSN: 2980-4299

Volume 4, Issue 9, September - 2025

Website: https://scientifictrends.org/index.php/ijst

Open Access, Peer Reviewed, Scientific Journal

6. Conclusion

Hardware Description Languages have become a pivotal tool in designing digital systems. They
are essential in the design workflow and contribute to almost all stages of design development and
implementation. They provide different levels of abstraction and help to describe a circuit in a
concise and efficient way. HDLs allow engineers to avoid costly mistakes and provide methods
to test a circuit at various stages of development and consider all possible scenarios. This is done
through verification and simulation processes. Moreover, they are directly used in synthesis and
implementation stages which are responsible for converting code into real-life circuits.
Implementation using FPGA and ASIC demonstrates that HDLs are tools that bridge abstract
descriptions and physical hardware.

As hardware systems grow even further in their complexity, the future of design will not rely
solely on HDLs, but rather on engineers’ ability to integrate them with upcoming tools and
methodologies. This will ensure that digital design remains reliable and efficient.

References
1. Khan, K. (2025). What is verification? Synopsys. https://www.synopsys.com/glossary/what-
is-verification.html
2. Mano, M. M., & Kime, C. R. (2001). Logic and computer design fundamentals (2nd ed.).
Prentice Hall.
3. Palnitkar, S. (2003). Verilog HDL: A guide to digital design and synthesis (2nd ed.). Prentice
Hall.
4. RealDigital. (n.d.). Introduction to logic simulation. RealDigital.
https://www.realdigital.org/doc/bd6a53089056fc9e2888deabdfcb2a66
5. Roth, C. H.,, John, L. K., & Lee, B. K. (2016). Digital systems design using Verilog (2nd ed.).
Cengage Learning.
6. Sufyan, M. (2024, April 8). Verilog vs VHDL: A comprehensive comparison. Wevolver.
https://www.wevolver.com/article/verilog-vs-vhdl-a-comprehensive-comparison
7. Vemeko. (2025, February 7). What’s the difference between functional simulation and timing
simulation? Vemeko Blog. https://www.vemeko.com/blog/67138.html
8. Wikipedia contributors. (n.d.). SystemVerilog. In Wikipedia. Retrieved September 15, 2025,
from https://en.wikipedia.org/wiki/SystemVerilog.

80|Page

https://scientifictrends.org/index.php/ijst
https://www.synopsys.com/glossary/what-is-verification.html
https://www.synopsys.com/glossary/what-is-verification.html
https://www.realdigital.org/doc/bd6a53089056fc9e2888deabdfcb2a66?utm_source=chatgpt.com
https://www.wevolver.com/article/verilog-vs-vhdl-a-comprehensive-comparison
https://www.vemeko.com/blog/67138.html?utm_source=chatgpt.com
https://en.wikipedia.org/wiki/SystemVerilog

