
International Journal of Scientific Trends- (IJST)
ISSN: 2980-4299

Volume 4, Issue 4, April - 2025

Website: https://scientifictrends.org/index.php/ijst

Open Access, Peer Reviewed, Scientific Journal

50 | P a g e

Increasing The Efficiency of Damaged File

Detection Tools Based on The Use of Hidden

Markov Models
1 E. J. Qilichev

1Tashkent State Agrarian University, Tashkent, Uzbekistan

2 I. E. Isroilov

1Tashkent State Agrarian University, Tashkent, Uzbekistan

Abstract

This paper reviews a new algorithm developed to improve the

performance of file detection based on hidden Markov models

(HMM). Hidden Markov models are an effective method for

detecting various types of disturbances and damages using time

series and probabilities. The algorithm uses learning-based

technologies to quickly and accurately detect file corruption.

The article is based on recovery of damaged files, detection and

analysis of changes in their structure. Monitoring file corruption

processes through hidden Markov models increases the possibility

of correctly predicting errors. The algorithm's performance is

more efficient in more complex structures compared to simple

statistics, it quickly detects file integration violations and creates a

recovery mechanism.

The main part of the article provides a detailed explanation of the

mechanisms for explaining and predicting possible file corruption

or invalidation using HMM. The new algorithm is designed to

improve security and speed up the recovery of damaged files.

Keywords: Heuristic model, statistical model, meta-, polymorphism, artificial neural

networks, infection, Snort system, heuristic analysis, imitation, behavioral analysis,

signature search, Anomaly detection.

Introduction

One of the main reasons for the increase in the number and variety of attacks on information

systems and the spread of malicious software, including programs that gain unauthorized access

to protected data, is the existing methods of protection against the introduction of malicious

programs. Programs included in information systems often cannot provide the necessary

protection. There are two main aspects to this problem. First of all, the most common methods of

protection against the spread of malware are based on the recognition of previously known

signatures, and therefore cannot fundamentally resist new malware in the initial period of its

https://scientifictrends.org/index.php/ijst

International Journal of Scientific Trends- (IJST)
ISSN: 2980-4299

Volume 4, Issue 4, April - 2025

Website: https://scientifictrends.org/index.php/ijst

Open Access, Peer Reviewed, Scientific Journal

51 | P a g e

existence, as well as malware that has been modified using meta- or polymorphism methods. The

same applies to somewhat sophisticated methods of software analysis based on the search for

correspondence between the studied information objects and specialized models: malicious

programs without images can be successfully used to carry out attacks on information systems. It

is suitable for heuristic and statistical models used in defense tools, as well as models based on

artificial neural networks.

II METHODS AND MATERIALS

Currently, there are few special tools for detecting infected data: their detection is performed by

antivirus programs, firewalls and intrusion detection systems as part of general protection against

viruses. These tools are divided into infection prevention tools and secure code development tools.

As a means of preventing damage, the most popular anti-malware software tools are analyzed:

Snort intrusion detection system and Kaspersky Internet Security. Malicious attachment detection

methods used in damage prevention tools can be divided into two groups: static and dynamic

analysis methods [1]. The first group of methods is based on the analysis that does not require the

operation of the studied object. The second group is about monitoring the program during the work

process. A more complete classification of methods for detecting harmful additives is presented

in Figure 1.

Figure 1. Methods for detecting harmful additives.

In terms of information security, exploits occur due to weaknesses in application and system

software. The presence of this type of vulnerability allows an attacker to exploit the vulnerability.

Vulnerabilities that could lead to arbitrary code execution include:

1. Buffer overflow vulnerabilities:

1.1. Stack Overflow.

1.2. The ball overflows.

Methods of identifying damaged information

Dynamic analysis Static analysis

Signature search
Proactive discovery

Manual analysis

Emulation

File format corruption analysis

Manual analysis

https://scientifictrends.org/index.php/ijst

International Journal of Scientific Trends- (IJST)
ISSN: 2980-4299

Volume 4, Issue 4, April - 2025

Website: https://scientifictrends.org/index.php/ijst

Open Access, Peer Reviewed, Scientific Journal

52 | P a g e

2. "format line" vulnerabilities.

3. Integer weaknesses.

Figure 2 provides a diagram illustrating the lifecycle of a software vulnerability and an exploit

that exploits it [2].

Figure 2. The life cycle of vulnerability.

Between stages 2 and 7 of the vulnerability lifecycles, it is important for an attacker to successfully

develop an exploit that they use to launch a discovered vulnerability, creating user-agent threats

to the IP. This time period is called the "window of opportunity." The characteristic length of the

"window of opportunity" is different for different software companies and can be small or

significant depending on how the company organizes the software support process. For example,

vulnerabilities in Microsoft software have not been updated for anywhere from a week to six

months. Those who are most inclined to use the Internet, therefore, users are isolated from the

source of updates.

Based on the analysis of the most popular and effective usage detection systems, the classification

of the methods of detecting the damaged data is explained in detail (Jiaru Song, Guihe Qin,

Yanhua Liang, Jie Yan, Minghui Sun,, 2024).

Currently, there are the following methods for detecting a corrupted file in real time:

- heuristic analysis;

- emulation;

- behavioral analysis;

- signature search;

- anomaly detection.

Despite the development of emulation methods and heuristic methods, modern antivirus systems

and complexes for detection of exploits, as can be seen from the statistics of actual detections,

mainly use the last two technologies [4]. However, these technologies do not fully cover the full

range of malware in the exploit category and cannot detect new exploits that use a new file format

unknown to antivirus software and new malicious code. The widespread use of "obfuscation" -

obfuscation of the code - in the development of different versions of exploits that use a certain

vulnerability, contributes to the decrease in the effectiveness of these technologies. Taking into

account the above and from the point of view of the goal of this dissertation (increasing the

effectiveness of tools and methods for detecting damaged files), it is interesting to develop an

effective specialized method for detecting malicious attachments in files. Unfeasible, based on

Window of opportunity

1.Product

release

2.Determi

nation of

internal

weakness

4. Writing

the demo

code

5.Start of

development

of the update

6.

Completion

of update

development

7.Install the

update

1.Product

release

https://scientifictrends.org/index.php/ijst

International Journal of Scientific Trends- (IJST)
ISSN: 2980-4299

Volume 4, Issue 4, April - 2025

Website: https://scientifictrends.org/index.php/ijst

Open Access, Peer Reviewed, Scientific Journal

53 | P a g e

principles other than the above methods. For this purpose, it was decided to develop a method for

identifying malicious attachments of inexecutable format files based on a model that takes into

account the structural features of exploits and does not use the concepts of exploit signatures and

anomalies in the structure.

Dedicated to the development of a model of infected files in non-executable format that identifies

the structure and properties of exploits. A mathematical model of the exploit loader is presented,

the presence of which allows correcting the fact of exploit injection. Based on the Markov chain

of executable instructions included in it, a method of building a language model of the operational

loader has been developed. As part of the study of the problem of putting a sequence of instructions

in the body of a file in a non-executable format, which appears when searching for a loader, a

theorem is formulated and establishes the relationship between the probability of convergence of

the two. That is: based on the research of the developed language model of the sequence of iso-

assembler in a certain number of steps with the probability of different values of the difference

between the initial positions of the disassembly, it was concluded that natural language text

classification methods can be effectively used in the task of separating code and data, which allows

to determine the exploit loader from the sequence of common data in the file. A method for

detecting exploits based on the detection of the presence of an executable loader in the body of a

file in a non-executable format has been developed [5].

Usually, an infected file is presented as a corrupted file and an embedded malicious part -

shellcode. Malware requires a properly executed bootloader to work. Thus, there is a descriptive

model of malicious attachments in files of non-executable format, which fully represents the object

studied in the work:

1. There is a container file in some format.

2. Changes to the container file format will cause a software error.

3. The malicious application in the container file is represented by its body and loader.

a) An additional body loader is an actual executable sequence of bytes.

b) An attachment body is a sequence of bytes that may contain infected data [6].

As a characteristic sign of a corrupted file in an unexecutable format, the presence of a portion of

the data that is a valid sequence of bytes in the file in an unexecutable format can be used. It is

this feature that forms the basis of the following works. Thus, the task of detecting malicious

attachments is reduced to the task of detecting a bootloader, which is performed on a file in a non-

executable format. To formalize it, the following mathematical model of attachment loader is built

[7].

𝐵 ∗= {𝐵𝐿 = 𝑏1, 𝑏2, . . . , 𝑏𝐿|𝑏𝑖 ∈ 𝑁0, 𝑏𝑖 ≤ 255 ≤ 𝑖 ≤ 𝐿, 𝐿 ∈ 𝑁0 } - be the set of ordered

sequences of bytes. 𝐵 ∈ 𝐵 ∗ for we define a subjective view.

𝑙𝑒𝑛: 𝐵 ∗ → 𝑁 ∶ 𝐵 ∈ 𝐵 ∗, 𝐵𝐿 = 𝑏1, 𝑏2, . . . , 𝑏𝐿; 𝑙𝑒𝑛(𝐵) = 𝐿; (1)

its value is the number of bytes in the sequence B. Set of all possible command statements

 О ⊂ В ∗ ‖𝑂‖ = 𝑁, 𝑜 ∈ 𝑂, 𝑚𝑖𝑛 𝑙𝑒𝑛(о) > 0; (2)

We mean the set of operator parameters. 𝑃 ⊂ 𝐵 ∗: ‖𝑃‖ = 𝑀,

where 𝑀 - the number of possible parameters.

Let 𝐾 be the set of correctly executed instructions. At the same time, 𝐾 ⊂ 𝑅𝑥𝑂, ya’ni 𝐾 =

 {(𝑜, 𝑝) | 𝑝 ∈ 𝑃, 𝑜 ∈ 𝑂}. E, 𝐼𝐴 − 32 be the limit for the minimum length of the byte sequence for

https://scientifictrends.org/index.php/ijst

International Journal of Scientific Trends- (IJST)
ISSN: 2980-4299

Volume 4, Issue 4, April - 2025

Website: https://scientifictrends.org/index.php/ijst

Open Access, Peer Reviewed, Scientific Journal

54 | P a g e

the exploit file loader, determined based on the processor's executable instruction standard. 𝑋 ∈

𝐵, 𝑙𝑒𝑛(𝑋) = 𝐹 let the input file be an ordered sequence of X bytes [8].

where F is the length of the file. According to the rule, we introduce a non-commutative addition

operation for B*:

𝐵1, 𝐵2 ∈ В ∗, В1, + В2, = 𝑏1𝑙, … , 𝑏1𝐿, 𝑏2𝑙, … , 𝑏1𝑅; 𝑙𝑒𝑛(В1) = 𝐿, 𝑙𝑒𝑛(𝐵2) = 𝑅; (3)

𝑓((𝑜, 𝑝)) = 𝑜 + 𝑝. about the rule f : 𝐾 → 𝐵 ∗ function, then the exploit loader will take the

form of the command chain Y from the X source file, that is

∃{𝑘𝑗} ∈ 𝐾: 𝑌 = ∑(𝑘 𝑗), 𝑌 ⊂ 𝑋, 𝑎𝑛𝑑 𝑙𝑒𝑛(𝑌) > Е; (4)

It should be noted that the presented model works with executable instructions, and the parsed file

is a sequence of bytes or machine code. To transfer from machine codes to assembly language

mnemonics, it is necessary to separate them into parts. The disassembly is based on static analysis

of the byte sequence [9]. The sequence of bytes that make up the body of a non-executable file

can also be thought of as a sequence of executable instructions that do not need to be correctly

translated into an executable instruction mnemonic. However, applying the disassembly technique

to the body of an executable file allows you to efficiently search for the shellcode in it. Thus, the

general algorithm for detection of exploits can be described as a sequence of disassembling parts

of the analyzed file and checking the results of the disassembly for compliance with the correctly

executed loader model. Finding an executable loader in a file in a non-executable format is

equivalent to solving the problem of dividing undefined sections of the program into code and

data [10]. Figure 3. shows a schematic view of the problem of dividing ambiguous parts of

programs into code and data. A similar problem occurs during disassembly and decompilation and

is solved by appropriate software tools (Dynlnst, OllyDbg, IDA, Hiew, etc.). However, there is an

important difference between the task of identifying a loader and the problem of clearly delimiting

ambiguous sections of programs: when solving it, it is not necessary to clearly define the

boundaries of code and data, it is enough to determine the existence of an executable loader.

Research and development of ways to solve the problem of dividing ambiguous sections of

programs into code and data have been considered by various researchers. The most successful

results were presented by Getman A.M., Gaysaryan S.S., Avetisyan A.I., as well as Natan

Rozenblum and Karen Hunt. Methods and classes of methods for solving the gap-filling problem

can be divided into signature and heuristic methods, which include the use of function boundary

templates based on the use of standard block heuristics and probabilistic methods. From the point

of view of the task of detecting damaged files, the most interesting is the method proposed by

I.Rozenblum using conditional random fields.

One of the main problems in using almost any gap-filling separation method is the so-called

instruction stacking effect, described by I.Rozenblum and K.Hunt. This effect is due to the

ambiguity of interpreting a sequence of bytes as a sequence of instructions, some of which are not

1 byte in length.

It should be noted that this effect is observed only in the calculation instructions of the complex

instruction set of the processor architecture (Intel 𝐼𝐴 − 32, as well as 𝐼𝐴 − 64).

In his work, I.Rozenblum published the self-alignment theorem, which is used in practice to speed

up data processing, and in fact, the disassembly process continues along the disassembled byte

sequence, which means that the effect of loading instructions is equalized.

https://scientifictrends.org/index.php/ijst

International Journal of Scientific Trends- (IJST)
ISSN: 2980-4299

Volume 4, Issue 4, April - 2025

Website: https://scientifictrends.org/index.php/ijst

Open Access, Peer Reviewed, Scientific Journal

55 | P a g e

Allows you to calculate the expected number of instructions, after disassembly, the traces of two

disassembled sequences will merge based on their initial mismatch in bytes.

If the disassembled sequence B starts 0 < 𝑑 < 𝐾 bytes after the sequence A, then A and B are

lined up, then the expected number of disassembled instructions in A is:

∑ 𝑁𝐾−1
𝑗=1 dj; (5)

Here 𝑁 = (𝑁𝑑𝑗) is the index size matrix.

However, when the formula is used in practice, there is a risk of losing instructions before

convergence occurs. In this work, a lemma and a theorem on the application of the convergence

effect were formulated and proved.

The n-step convergence probability vector of two disjoint sequences with different relative

displacements of the starting points of disassembly can be calculated as 𝑆𝑛 = 𝑄𝑛−1 ∗ 𝑅, where:

𝑅 = (𝑄0,0, 𝑄1,0, … , 𝑄𝑘,0)𝑇 is the convergence probability vector in one step, 𝑄𝑖,𝑗 is the probability

of transition from state i to a different state j.

The probability of convergence of two disassembly sequences in no more than n steps (without

accepting the initial position) 𝑃𝑛 = (𝑄𝑛−1𝑥𝑅)𝑥𝑉𝑇 , 𝐴𝑔𝑎𝑟 𝑉 = (𝑉0, 𝑉1, … 𝑉𝑘)𝑇 are the

probabilities of the initial differences in the positions of the sequences.

IV RESULT

The degree quantile a for the number of steps until the two chains converge is calculated as the

minimum n with 𝑃𝑛 > 𝑎. This result makes it possible to evaluate the applicability of the effect of

instruction convergence in practice and to determine whether it is necessary to use the full

partitioning method to find a real sequence of instructions with 𝑂(𝑁2) complexity. Some

instructions are good enough to ignore until they quickly approach 𝑂(𝑁).

With a sufficiently large length of the disassembled sequence, the probability that all chains

starting within the length of the first instruction will converge completely is close to 1.

The conclusion from this investigation is that during disassembly, it is possible to skip the

necessary instructions of the malicious add-on loader. Figure 3 shows a case where it is possible

to skip fragmented instructions due to a sufficiently large number of convergence instructions.

Figure 3. The ability to skip instructions.

Therefore, it is important to consider the possibility of complete convergence and avoid the

possibility of missing instructions when searching for a malicious attachment loader by means of

disassembly.

The difference between a corrupted file and an original file is that the internal integrity of the

original data is broken and there is a slight change in the original file format. The consequence of

https://scientifictrends.org/index.php/ijst

International Journal of Scientific Trends- (IJST)
ISSN: 2980-4299

Volume 4, Issue 4, April - 2025

Website: https://scientifictrends.org/index.php/ijst

Open Access, Peer Reviewed, Scientific Journal

56 | P a g e

this change is the incorrect operation of the software that processes the file and the violation of

the execution of the command sequence by the attacker. The user agent is connected to the IP

using malicious plugins. The structure of the damaged file is shown in Figure 4.

a) Original file (container) b) Corrupted file c) The processor program

Figure 4. Structure of a damaged file.

Figure 4. An analysis of how the malicious code is added to the file and how it leads to an attack.

File = a set of contiguous bytes, 𝐹 = {𝑏1, 𝑏2, 𝑏3, . . . , 𝑏𝑛}; where 𝑏𝑖 ∈ {0,1}8, i.e., each byte is an 8-

bit (1-byte) value.

Malicious file code:

𝐹_𝑜 — original (harmless) file;

𝐿 — loader bytes;

𝑀 — malicious code (malicious payload);

𝑘 — position where malicious code is placed.

Then the infected file, 𝐹𝑧 = 𝐹𝑜[1: 𝑘 − 1] ‖ 𝐿 ‖ 𝑀 ‖ 𝐹𝑜[𝑘: 𝑛]; ‖ symbol - "concatenation" (concat)

operator, that is, the infected file will be in the following order:

1. The beginning of the original file (from 1 to 𝑘 − 1);

2. The loader (𝐿);

3. The malicious code (𝑀);

4. The rest of the original file (from 𝑘 to 𝑛).

The processor reads the file and executes it through the following function, 𝑓(𝐹[𝑖]) =

 𝑜𝑝𝑒𝑟𝑎𝑡𝑠𝑖𝑦𝑎(𝐹[𝑖], If the malicious code starts at 𝑖 = 𝑘, then, ∃𝑖 ∈ [𝑘, 𝑘+∣ 𝐿 ∣ +∣ 𝑀 ∣] ⇒

𝑓(𝐹[𝑖]) ∉, is considered a security breach.

Security violation model, If 𝑓(𝐹𝑧) ≠ 𝑓(𝐹𝑜) ⇒ The file is corrupted or dangerous, Or in other

words:

𝐼𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦(𝐹𝑧) = 𝐹𝑎𝑙𝑠𝑒 , If ∃ 𝑖 ∈ [𝑘, 𝑘+∣ 𝐿 ∣ +∣ 𝑀 ∣] ∶ 𝑓(𝐹𝑧[𝑖]) ∉ 𝑠𝑎𝑓𝑒 𝑑𝑜𝑚𝑎𝑖𝑛

safe domain — a set of safe instructions accepted by the processor.

C8 01 89 77 80 38 52 EE 6F 01 32 80 10 20 07

C8 01 72 80 10 20 07 C8 81 3E 9 40 1C D9 27

DB 68 27 72 80 10 20 07 C8 0172 80 1C 20 07

E4 DE 01 E2 48 9 BF 05 C8 00 72 80 10 20 07

C8 01 72 80 10 20 07 FA E4 00 71 64 9F 6C A3

9D C8 01 72 80 10 20 07 C8 01 72 80 1C 90 7B

07 FA C2 91 1D 1D 6D 2F 5F 36 37 37 87 B4 87

87 77 37 BO FD 65 48 4B 33 4F CD 4D CD ED

ED 6D 72 EF 30 19 40 OE 90 03 E4 00 39 40 OE

90 03 E4 80 6C 3A DO 17 8E 7C F6 E5 CD ED 13

8C 8C 5D 16 17 7D DF FC 96 2B ED 2F DB 6E 2F

79 EF D5 47 57 6F E6 85 6F 9F 35 86 F5 60 4D

D9 74 92 CE 8A 1C 20 07 C8 01 72 80 1C 20 07

C8 01 F9 72 A0 D7 1C 59 FF ED C7 27 97 D8 2A

OE 55 ED C6 91 AD 4D B5 C5 71 96 83 06 BD

C6 48 E6 3F 54 39 CE 99 B7 7F 7C DE FO 52 BE

4C A5 83 25 07 C8 01 72 80 10 20 07 C8 01 72

40 OE 1C E8 10 47 76 3C FE 7B F1 86 71 OA 43

06 77 E7 C8 B6 A6 FA 7F EE F6 E6 A8 A8 AA 89

C8 01 89 77 80 38 52 EE 6F 01 32 80

10

Malicious data

9D C8 01 72 80 1C 20 07 C8 01 72 80

Loader

30 19 40 OE 90 03 E4 00 39 40 OE 90

03 E4 80 6C 3A DO 17 8E 7C F6 E5 CD

ED 13 8C 8C 5D 16 17 7D DF FC 96 2B

ED 2F DB 6E 2F 79 EF D5 47 57 6F E6

85 6F

body

С8 Вб А6 РА 7Р ЕЕ Р6 Еб А8 А8 АА 6

if (i) for(i = і, i < 3; i++)

char_array_4[] = ((char

char_array_4[2] ((char

char_array_4[]

for- char_d(j = 0; (< i +);

Ret += base64_charater

while((i++ <3))

ret += “=”}

Function error

E
x
p
la

in
ed

 p
ro

ce
ss

https://scientifictrends.org/index.php/ijst

International Journal of Scientific Trends- (IJST)
ISSN: 2980-4299

Volume 4, Issue 4, April - 2025

Website: https://scientifictrends.org/index.php/ijst

Open Access, Peer Reviewed, Scientific Journal

57 | P a g e

Table 1. Block view of the corrupted file.

Part Byte spacing Description

F_o[1:k-1] 1 from 𝑘 − 1 to Original file

𝐿 (Loader) 𝑘 from 𝑘 + 𝑙 − 1 to Loading code

𝑀 (Malicious)
𝑘 + 𝑙 from 𝑘 + 𝑙 +

 𝑚 – 1 to
Harmful code

𝐹_𝑜[𝑘: 𝑛] 𝑘 + 𝑙 + 𝑚 from 𝑛 to Remainder of the file

A deep understanding of the attack mechanism was achieved.

Accurate mathematical formulas have been developed to detect malicious files. This model will

serve as the main theoretical foundation for the development of automatic intrusion detection

systems (for example, IDS - Snort) in the future.

 Software Damaged information

Figure 5. Problems of the gap filling problem of dividing code and data.

CONCLUSION

Among the modern information security problems, identifying malicious programs and effectively

combating them is one of the urgent issues. In this study, the problem of improving the

effectiveness of existing tools by using hidden Markov models (HMM) in detecting infected files

was considered. Research results show that systems built on the basis of HMM study the sequences

Title

Function

Data

Function

Data

80 89 77 80 38 52 EE 6F 01 32

80 10 20 07 C8 01 72 80 10

20 07 C8 81 3E 9 40 10 09 27

08 68 27 72 80 10 20 07 72

80 1C 20 07 84 DE 02 E2 48 9

C8 01 BF 05 C8 00 28 01 C 20

07 C8 01 72 80 1C 20 07 FA

14 00 71 64 9F 6C A3 9D C8

01 72 80 10 20 07 08 01 72

80 1C 90 78 07 FA 29 11D 10

6D 2F SF 36 37 37 B7 B4 78

77 73 7 B0 FD 65 48 48 33 4F

CD 4D CD ED ED 6D 72 EF 30

19 40 OE 90 03 E4 00 39 40

0E 90 03 E4 80 6C 3A DO 17

8E 7C FG ES CD ED 13 8C SC

SD 16 177D OF FC 96 2B ED

2F DB GE

9F 35.86

A0 D7 IC 59 FF ED 57279708

ZA OE 55 ED C6 91 C5 71 96

83 06 BD C6 48 E6 3F 5439

Idoralar 99 87 7F 7C DE FO S2

837 BE 4C A520

Loader /

function

?

Program

Flow control graph

Data flow graph

Open source

https://scientifictrends.org/index.php/ijst

International Journal of Scientific Trends- (IJST)
ISSN: 2980-4299

Volume 4, Issue 4, April - 2025

Website: https://scientifictrends.org/index.php/ijst

Open Access, Peer Reviewed, Scientific Journal

58 | P a g e

of hidden behavior in files and show high accuracy in detecting anomalies from them. The

structural structure of the files and their performance characteristics were analyzed in the detection

of malicious activity using hidden Markov models. With the help of models, the possibility of

accurate and efficient classification has appeared, which serves to reduce the level of false positive

and false negative signal in security systems. It was also confirmed through experiments that the

HMM-based approach has significant advantages over traditional signature detection methods.

This approach not only detects existing malicious files, but also detects previously unknown

malicious activities. In conclusion, it can be said that HMM-based approaches to detecting infected

files are a promising and effective technology for strengthening information security. In the future,

the integration of such models with machine learning methods will take an important place in the

development of real-time detection systems.

References

[1] Marcus Botacin, Felipe Duarte Domingues, Fabrício Ceschin, Raphael Machnicki, Marco

Antonio Zanata Alves, Paulo Lício de Geus, André Grégio, AntiViruses under the

microscope: A hands-on perspective, ISSN 0167-4048,:

https://doi.org/10.1016/j.cose.2021.102500., 2022.

[2] СПОСОБ ГГОВЫШЕШШ ЭФФЕКТИВНОСТИ СРЕДСТВ ВЫЯВЛЕНИЯ

ЗАРАЖЕННЫХ ФАЙЛОВ НА ОСНОВЕ ИСНОЛЬЗОВАИИЯ СКРЫТЫХ

МАРКОВСКИХ ¡МОДЕЛЕЙ, Эдел Дмитрий Александрович, Ростов-на-Дону, 2013.

[3] Jiaru Song, Guihe Qin, Yanhua Liang, Jie Yan, Minghui Sun,, DGIDS: Dynamic graph-

based intrusion detection system for CAN,, ISSN 0167-4048,:

https://doi.org/10.1016/j.cose.2024.104076., 2024.

[4] Carlos Henrique Macedo dos Santos, Sidney Marlon Lopes de Lima,, XAI-driven antivirus

in pattern identification of citadel malware,, ISSN 1877-7503,:

https://doi.org/10.1016/j.jocs.2024.102389., 2024,.

[5] Rajasekhar Chaganti, Vinayakumar Ravi, Tuan D. Pham,, Deep learning based cross

architecture internet of things malware detection and classification,, ISSN 0167-4048,:

https://doi.org/10.1016/j.cose.2022.102779., 2022.

[6] Timothy McIntosh, Paul Watters, A.S.M. Kayes, Alex Ng, Yi-Ping Phoebe Chen,, Enforcing

situation-aware access control to build malware-resilient file systems,, ISSN 0167-739X,:

https://doi.org/10.1016/j.future.2020.09.035., 2021.

[7] Manuel Navarro-García, Vanesa Guerrero, María Durban, Arturo del Cerro,, Feature and

functional form selection in additive models via mixed-integer optimization,, ISSN 0305-

0548: https://doi.org/10.1016/j.cor.2024.106945., 2025.

[8] Rui Liu, Xiaoli Zhang,, Generating machine-executable plans from end-user's natural-

language instructions,, ISSN 0950-7051: https://doi.org/10.1016/j.knosys.2017.10.023.,

2018.

https://scientifictrends.org/index.php/ijst

International Journal of Scientific Trends- (IJST)
ISSN: 2980-4299

Volume 4, Issue 4, April - 2025

Website: https://scientifictrends.org/index.php/ijst

Open Access, Peer Reviewed, Scientific Journal

59 | P a g e

[9] Muhammad Mudassar Yamin, Basel Katt,, Modeling and executing cyber security exercise

scenarios in cyber ranges,, ISSN 0167-4048,: https://doi.org/10.1016/j.cose.2022.102635.,

2022.

[10] Hasan H. Al-Khshali, Muhammad Ilyas,, Impact of Portable Executable Header Features on

Malware Detection Accuracy,, ISSN 1546-2218,:

https://doi.org/10.32604/cmc.2023.032182., 2022.

https://scientifictrends.org/index.php/ijst

